INSTRUCTIONS TO CANDIDATES

Please read these instructions carefully, but do not open the question paper until you are told that you may do so.

A separate answer sheet is provided for this paper. Please check you have one. You also require a soft pencil and an eraser.

Please complete the answer sheet with your candidate number, centre number, date of birth, and full name.

This paper is the second of two papers.

There are 20 questions on this paper. For each question, choose the one answer you consider correct and record your choice on the separate answer sheet. If you make a mistake, erase thoroughly and try again.

There are no penalties for incorrect responses, only marks for correct answers, so you should attempt all 20 questions. Each question is worth one mark.

You can use the question paper for rough working or notes, but no extra paper is allowed.

You must complete the answer sheet within the time limit.

Calculators and dictionaries are NOT permitted.

There is no formulae booklet for this test.

Please wait to be told you may begin before turning this page.

This question paper consists of 21 printed pages and 3 blank pages.
Find the complete set of values of k for which the line $y = x - 2$ crosses or touches the curve $y = x^2 + kx + 2$.

A $-1 \leq k \leq 3$

B $-3 \leq k \leq 5$

C $-4 \leq k \leq 4$

D $k \leq -1$ or $k \geq 3$

E $k \leq -3$ or $k \geq 5$

F $k \leq -4$ or $k \geq 4$
Given that \(\tan \theta = 2 \) and \(180^\circ < \theta < 360^\circ \), find the value of \(\cos \theta \)

A \(\sqrt{3} \)

B \(-\sqrt{3} \)

C \(\frac{\sqrt{3}}{2} \)

D \(-\frac{\sqrt{3}}{2} \)

E \(\frac{\sqrt{5}}{5} \)

F \(-\frac{\sqrt{5}}{5} \)

G \(\frac{2\sqrt{5}}{5} \)

H \(-\frac{2\sqrt{5}}{5} \)
A student makes the following claim:

For all integers \(n \), the expression \(4 \left(\frac{9n + 1}{2} - \frac{3n - 1}{2} \right) \) is divisible by 3.

Here is the student’s argument:

\[
4 \left(\frac{9n + 1}{2} - \frac{3n - 1}{2} \right) = 2 \left(2 \left(\frac{9n + 1}{2} - \frac{3n - 1}{2} \right) \right) \quad \text{(I)}
\]

\[
= 2(9n + 1 - 3n - 1) \quad \text{(II)}
\]

\[
= 2(6n) \quad \text{(III)}
\]

\[
= 12n \quad \text{(IV)}
\]

\[
= 3(4n) \quad \text{(V)}
\]

which is always a multiple of 3. \quad \text{(VI)}

So the expression \(4 \left(\frac{9n + 1}{2} - \frac{3n - 1}{2} \right) \) is always divisible by 3.

Which one of the following is true?

A The argument is correct.
B The argument is incorrect, and the first error occurs on line (I).
C The argument is incorrect, and the first error occurs on line (II).
D The argument is incorrect, and the first error occurs on line (III).
E The argument is incorrect, and the first error occurs on line (IV).
F The argument is incorrect, and the first error occurs on line (V).
G The argument is incorrect, and the first error occurs on line (VI).
Consider the following statement:

Every positive integer \(N \) that is greater than 6 can be written as the sum of two non-prime integers that are greater than 1.

Which of the following is/are counterexample(s) to this statement?

I \(N = 5 \)
II \(N = 7 \)
III \(N = 9 \)

A none of them
B I only
C II only
D III only
E I and II only
F I and III only
G II and III only
H I, II and III
Which one of the following shows the graph of

\[y = \frac{2^x}{1 + 2^x} \]

(Dotted lines indicate asymptotes.)
The function \(f(x) \) is defined for all real values of \(x \).

Which of the following conditions on \(f(x) \) is/are \textbf{necessary} to ensure that

\[
\int_{-5}^{0} f(x) \, dx = \int_{0}^{5} f(x) \, dx
\]

Condition I: \(f(x) = f(-x) \) for \(-5 \leq x \leq 5\)

Condition II: \(f(x) = c \) for \(-5 \leq x \leq 5\), where \(c \) is a constant

Condition III: \(f(x) = -f(-x) \) for \(-5 \leq x \leq 5\)

A none of them

B I only

C II only

D III only

E I and II only

F I and III only

G II and III only

H I, II and III
Consider the following conditions on a parallelogram $PQRS$, labelled anticlockwise:

I. length of $PQ = $ length of QR
II. The diagonal PR intersects the diagonal QS at right angles
III. $\angle PQR = \angle QRS$

Which of these conditions is/are individually sufficient for the parallelogram $PQRS$ to be a square?

<table>
<thead>
<tr>
<th>Condition I is sufficient</th>
<th>Condition II is sufficient</th>
<th>Condition III is sufficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>A yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>B yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>C yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>D yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>E no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>F no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>G no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>H no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
A student is asked to prove whether the following statement (\(\ast\)) is true or false:

\(\ast\) For all real numbers \(a\) and \(b\), \(|a + b| < |a| + |b|\)

The student’s proof is as follows:

Statement (\(\ast\)) is false. A counterexample is \(a = 3\), \(b = 4\), as \(|3 + 4| = 7\) and \(|3| + |4| = 7\), but \(7 < 7\) is false.

Which of the following best describes the student’s proof?

A The statement (\(\ast\)) is true, and the student’s proof is not correct.

B The statement (\(\ast\)) is false, but the student’s proof is not correct: the counterexample is not valid.

C The statement (\(\ast\)) is false, but the student’s proof is not correct: the student needs to give all the values of \(a\) and \(b\) where \(|a + b| < |a| + |b|\) is false.

D The statement (\(\ast\)) is false, but the student’s proof is not correct: the student should have instead stated that for all real numbers \(a\) and \(b\), \(|a + b| \leq |a| + |b|\).

E The statement (\(\ast\)) is false, and the student’s proof is fully correct.
A student wishes to evaluate the function $f(x) = x \sin x$, where x is in radians, but has a calculator that only works in degrees.

What could the student type into their calculator to correctly evaluate $f(4)$?

A. $(\pi \times 4 \div 180) \times \sin(4)$
B. $(\pi \times 4 \div 180) \times \sin(\pi \times 4 \div 180)$
C. $4 \times \sin(\pi \times 4 \div 180)$
D. $(180 \times 4 \div \pi) \times \sin(4)$
E. $(180 \times 4 \div \pi) \times \sin(180 \times 4 \div \pi)$
F. $4 \times \sin(180 \times 4 \div \pi)$
The real numbers a, b, c and d satisfy both

\[0 < a + b < c + d \]

and

\[0 < a + c < b + d \]

Which of the following inequalities must be true?

I. $a < d$

II. $b < c$

III. $a + b + c + d > 0$

A. none of them

B. I only

C. II only

D. III only

E. I and II only

F. I and III only

G. II and III only

H. I, II and III
A spiral line is drawn as shown.

This spiral pattern continues indefinitely.

Which one of the following points is not on the spiral line?

A (99, 100)
B (99, −100)
C (−99, 100)
D (−99, −100)
E (100, 99)
F (100, −99)
G (−100, 99)
H (−100, −99)
Which one of A–F correctly completes the following statement?

Given that \(a < b \), and \(f(x) > 0 \) for all \(x \) with \(a < x < b \), the trapezium rule produces an overestimate for \(\int_a^b f(x) \, dx \) ...

A ... if \(f'(x) > 0 \) and \(f''(x) < 0 \) for all \(x \) with \(a < x < b \)

B ... only if \(f'(x) > 0 \) and \(f''(x) < 0 \) for all \(x \) with \(a < x < b \)

C ... if and only if \(f'(x) > 0 \) and \(f''(x) < 0 \) for all \(x \) with \(a < x < b \)

D ... if \(f'(x) < 0 \) and \(f''(x) > 0 \) for all \(x \) with \(a < x < b \)

E ... only if \(f'(x) < 0 \) and \(f''(x) > 0 \) for all \(x \) with \(a < x < b \)

F ... if and only if \(f'(x) < 0 \) and \(f''(x) > 0 \) for all \(x \) with \(a < x < b \)
13 \quad f(x) \text{ is a function for which}

$$\int_0^3 (f(x))^2 \, dx + \int_0^3 f(x) \, dx = \int_0^1 f(x) \, dx$$

Which of the following claims about \(f(x) \) is/are \textbf{necessarily} true?

I \quad f(x) \leq 0 \text{ for some } x \text{ with } 1 \leq x \leq 3

II \quad \int_0^3 f(x) \, dx \leq \int_0^1 f(x) \, dx

\begin{align*}
\text{A} & \quad \text{neither of them} \\
\text{B} & \quad \text{I only} \\
\text{C} & \quad \text{II only} \\
\text{D} & \quad \text{I and II}
\end{align*}
An arithmetic sequence T has first term a and common difference d, where a and d are non-zero integers.

Property P is:

For some positive integer m, the sum of the first m terms of the sequence is equal to the sum of the first $2m$ terms of the sequence.

For example, when $a = 11$ and $d = -2$, the sequence T has property P, because

$$11 + 9 + 7 + 5 = 11 + 9 + 7 + 5 + 3 + 1 + (-1) + (-3)$$

i.e. the sum of the first 4 terms equals the sum of the first 8 terms.

Which of the following statements is/are true?

I. For T to have property P, it is sufficient that $ad < 0$.
II. For T to have property P, it is necessary that d is even.

A. neither of them
B. I only
C. II only
D. I and II
Which one of the following is a necessary and sufficient condition for

\[\sum_{k=1}^{n} \sin\left(\frac{k\pi}{3}\right) = \frac{\sqrt{3}}{2} \]

to be true?

A \(n = 1 \)

B \(n \) is a multiple of 3

C \(n \) is a multiple of 6

D \(n \) is 1 more than a multiple of 3

E \(n \) is 1 more than a multiple of 6

F \(n \) is 1 more than a multiple of 6 or \(n \) is 2 more than a multiple of 6
A student calculates \(\frac{d}{dx} \left(\int_0^x f(t) \, dt \right) \) as follows:

(I) \(\int_x^2 t^2 \, dt = \int_0^x t^2 \, dt - \int_0^x t^2 \, dt \)

(II) By FTC, \(\frac{d}{dx} \left(\int_0^x t^2 \, dt \right) = x^2 \)

(III) By FTC, \(\frac{d}{dx} \left(\int_0^2 t^2 \, dt \right) = (2x)^2 = 4x^2 \)

(IV) So \(\frac{d}{dx} \left(\int_0^x t^2 \, dt \right) = 4x^2 - x^2 \)

(V) giving \(\frac{d}{dx} \left(\int_0^x t^2 \, dt \right) = 3x^2 \)

Which of the following best describes the student’s calculation?

A The calculation is completely correct.

B The calculation is incorrect, and the first error occurs on line (I).

C The calculation is incorrect, and the first error occurs on line (II).

D The calculation is incorrect, and the first error occurs on line (III).

E The calculation is incorrect, and the first error occurs on line (IV).

F The calculation is incorrect, and the first error occurs on line (V).
A set of six distinct integers is split into two sets of three.

The first set of three integers has a mean of 10 and a median of 8.
The second set of three integers has a mean of 12 and a median of 9.

What is the smallest possible range of the set of all six integers?

A 8
B 10
C 11
D 12
E 14
F 15
In this question, \(f(x) = ax^3 + bx^2 + cx + d \) and \(g(x) = px^3 + qx^2 + rx + s \) are cubic polynomials.

If \(f(x) - g(x) > 0 \) for every real \(x \), which of the following is/are \textbf{necessarily} true?

\begin{itemize}
 \item[I] \(a > p \)
 \item[II] \textbf{if} \(b = q \) \textbf{then} \(c = r \)
 \item[III] \(d > s \)
\end{itemize}

\begin{tabular}{ll}
 A & none of them \\
 B & I only \\
 C & II only \\
 D & III only \\
 E & I and II only \\
 F & I and III only \\
 G & II and III only \\
 H & I, II and III \\
\end{tabular}
Nine people are sitting in the squares of a 3 by 3 grid, one in each square, as shown. Two people are called *neighbours* if they are sitting in squares that share a side. (People in diagonally adjacent squares, which only have a point in common, are not called neighbours.)

Each of the nine people in the grid is either a truth-teller who *always* tells the truth, or a liar who *always* lies.

Every person in the grid says: ‘My neighbours are all liars’.

Given only this information, what are the **smallest** number and the **largest** number of people who could be telling the truth?

<table>
<thead>
<tr>
<th>smallest</th>
<th>largest</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
</tr>
<tr>
<td>E</td>
<td>3</td>
</tr>
<tr>
<td>F</td>
<td>4</td>
</tr>
<tr>
<td>G</td>
<td>4</td>
</tr>
<tr>
<td>H</td>
<td>5</td>
</tr>
</tbody>
</table>
20 x is a real number and f is a function.

Given that **exactly one** of the following statements is true, which one is it?

A $x \geq 0$ only if $f(x) < 0$

B $x < 0$ if $f(x) \geq 0$

C $x \geq 0$ only if $f(x) \geq 0$

D $f(x) < 0$ if $x < 0$

E $f(x) \geq 0$ only if $x \geq 0$

F $f(x) \geq 0$ if and only if $x < 0$